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The augmented Langevin approach described in a previous article is applied to 
the problem of introducing multiplicative noise and nonlinear dissipation into 
an arbitrary Hamiltonian system in a thermodynamically consistent way, so 
that a canonical equilibrium distribution is approached asymptotically at long 
times. This approach leads to a general nonlinear fluctuation-dissipation 
relation which, for a given form of the multiplicative noise (chosen on physical 
grounds), uniquely determines the form of the nonlinear dissipative terms 
needed to balance the fluctuations. In addition to the noise and dissipation 
terms, the augmented Langevin equation contains an additional term whose 
form depends on the stochastic interpretation rule used. This term vanishes 
when the Stratonovich rule is chosen and the noise itself is of a Hamiltonian 
origin. This development provides a simple phenomenological route to results 
previously obtained by detailed analysis of microscopic system-bath models. 
The procedure is illustrated by applications to a mechanical oscillator with 
fluctuating frequency, a classical spin in a fluctuating magnetic field, and the 
Brownian motion of a rigid rotor. 

KEY WORDS: Langevin equation; Fokker Planck equation; fluctuation-dis- 
sipation theorem; multiplicative noise; nonlinear dissipation; Hamiltonian 
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1. I N T R O D U C T I O N  A N D  S U M M A R Y  

T h e  c o n c e p t  o f  a n  i s o l a t e d  H a m i l t o n i a n  s y s t e m  is a usefu l  i d e a l i z a t i o n  

u p o n  w h i c h  m u c h  o f  c lass ica l  m e c h a n i c s  is based .  T h e r e  a re  m a n y  
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situations, however, in which this idealization is not appropriate because 
an essential role is played by interactions with the surroundings. For exam- 
ple, the system of interest may be part of a much larger isolated system, the 
remainder of which serves as a heat bath. ~1 3/ 

A Hamiltonian system in equilibrium with a heat bath is described by 
the well-established principles of equilibrium statistical mechanics. The 
dynamical or nonequilibrium behavior of a Hamiltonian system in contact 
with a heat bath is less easily described, and the various methods that have 
been proposed for doing so are less well established. One of the oldest and 
most useful approaches is the phenomenological one of modeling the 
interaction between the system and heat bath stochastically, in the spirit of 
the original Langevin theory of Brownian motion. In this approach, one 
introduces into the dynamical equations for the isolated system an 
appropriate set of random forcing terms, the form of which is postulated on 
physical grounds based on one's conception of the nature of the 
system bath coupling. These terms will loosely be referred to as "fluc- 
tuation" or "noise" terms. 

It has not always been recognized that it is simultaneously necessary 
to introduce corresponding dissipative terms to balance the effects of the 
fluctuations, for otherwise the model will not be thermodynamically con- 
sistent and a canonical equilibrium distribution will not be approached at 
long times. ~3) Unfortunately, the proper form of the required dissipative 
terms is not always obvious from a phenomenological point of view. In the 
frequently encountered case of multiplicative noise, the dissipative terms 
are usually nonlinear and there has been no reliable way to infer them 
phenomenologically. 

This circumstance has motivated a number of investigations of 
microscopic system-bath models, from which the corresponding stochastic 
models are obtained by eliminating bath variables. In this way the proper 
nonlinear fluctuation-dissipation relations for the dissipative terms have 
been obtained for a variety of systems with multiplicative noise, t3) In these 
treatments it is very satisfying to see the consistent stochastic model emerge 
from the microscopic model in a constructive way. Unfortunately, in each 
analysis of this kind the details are quite different, and one obtains no 
information of a more general nature. In particular, these treatments have 
not suggested the existence of the general nonlinear fluctuation-dissipation 
relation derived in Section 2, which subsumes many of the microscopically 
derived results as special cases. 

Our purpose here is to show that the augmented Langevin approach ~4) 
provides a simple and straightforward phenomenological procedure for 
consistently introducing multiplicative noise and nonlinear dissipation into 
an arbitrary classical Hamiltonian system. This approach leads to a general 
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nonlinear fluctuation-dissipation relation which, for a given assumed form 
of the multiplicative noise, uniquely determines the form of the 
corresponding nonlinear dissipative terms needed to balance the fluc- 
tuations. This way of using the fluctuation-dissipation relation is the con- 
verse of the original augmented Langevin reasoning,(4~ in which the form of 
the multiplicative noise was inferred from the given nonlinear dissipation. 

The augmented Langevin equation that we obtain contains, in 
addition to the noise and dissipation terms, an additional term involving 
the noise coefficient matrix. The form assumed by this term depends upon 
the choice of a stochastic interpretation rule,(5~ which is necessary in order 
for the corresponding Fokker-Planck equation to be invariant to this 
choice. (41 Fortunately, if the Stratonovich rule is adopted (which is 
physically appropriate if the white noise employed in the development is 
regarded as the limit of colored noise for vanishing autocorrelation time), 
this additional term vanishes whenever the noise itself is ultimately of a 
Hamiltonian origin, as is usually the case. This situation obtains, in par- 
ticular, when the composite system obtained by combining the system of 
interest with the heat bath is Hamiltonian in nature. The augmented 
Langevin equation then assumes a simple and intuitive form in which the 
motion is generated simply by superimposing the noise and dissipation 
terms upon the Hamiltonian dynamics of the isolated system, just as in the 
original Langevin theory. 

Additional generality is obtained by basing the development upon a 
generalized formulation of Hamiltonian dynamics in terms of an antisym- 
metric matrix in state space. (6~ This formulation includes canonical 
Hamiltonian dynamics as a special case, but it also permits the treatment 
of systems that are essentially Hamiltonian in nature but cannot be cast 
into canonical form. Certain systems of an odd number of variables may be 
dealt with in this way; an example is a spin in a magnetic field, which we 
consider in Section 3. Even when the system of interest is a canonical 
Hamiltonian system or can be reduced to one by a transformation of 
variables, the more general formulation has the advantage of greater com- 
pactness and transparency. It is therefore more convenient for many pur- 
poses, as the present development illustrates. 

The general development summarized above is presented in Section 2. 
Its application to particular systems of interest is illustrated in Section 3, 
where thermodynamically consistent stochastic equations are obtained for 
a mechanical oscillator with fluctuating frequency, a classical spin in a fluc- 
tuating magnetic field, and a rigid rotor undergoing Brownian motion. 
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2. G E N E R A L  F O R M U L A T I O N  

We consider an arbitrary Hamiltonian system of the general form ~6) 

= A ( x ) .  V/-/ (1) 

where x = ( x x ,  x2 ..... xn) is the phase point, H(x) is the Hamiltonian 
function, V = ~/0x, and A(x) is an antisymmetric matrix satisfying the con- 
dition 

V ' A = 0  (2) 

The antisymmetry of A implies at once that H is a constant of the motion. 
Equation (2), together with the antisymmetry of A, implies that 
V . ( A . V H ) = 0 ,  so that Eq. (1) generates an incompressible or volume- 
preserving flow in the phase space. Canonical Hamiltonian dynamics is a 
special case of the above in which n is even, x = (ql, Pl,  q2, P2,...), and A is 
the constant matrix whose only nonzero elements are A~,~+I= 
--Ak+l,k =�89 + (-- 1) k+l 3 . 

Equation (1) describes the dynamics of the isolated system. Our objec- 
tive is to construct a stochastic model of the dynamical behavior when the 
system is in contact with a heat bath. This will be done by using the 
augmented Langevin procedure ~4~ to introduce a multiplicative noise term 
of the form G(x).  ~(t) into the right member of Eq. (1). Here ~(t) is an n- 
dimensional vector whose components are independent zero-mean nor- 
malized Gaussian white noises. Thus ( ~ ( t ) > = 0  and ( ~ ( t ) ~ ( t + ~ ) > =  
16(~), where I is the unit matrix and the angular brackets denote an 
appropriately weighted ensemble average over all possible realizations of 
~(t). The appropriate form of G(x) in any particular situation is to be 
inferred from the assumed mechanism by which the system and bath are 
coupled. That is to say, G(x) is to be chosen by considering the physical 
origin of the noise. Although it is not explicitly indicated by the notation, 
G will in general depend on the bath temperature T as well as on x. 

According to the augmented Langevin procedure, the introduction of 
the noise term must be accompanied by the introduction of a correction 
term F(x) which vanishes in the limit of zero fluctuations. r The correction 
term is needed to allow for and resolve the inherent phenomenological 
uncertainty in the application of the conventional Langevin approach to 
nonlinear problemsJ 5) The augmented Langevin equation corresponding to 
Eq. (1) is therefore 

= A.  V H +  F(x) + G(x) �9 ~(t) (3) 

which we shall interpret as a Stratonovich equation. r We emphasize that 
this interpretation is a matter of convenience rather than necessity; adop- 
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tion of the It6 rule (or some other stochastic interpretation rule) would 
lead to equivalent results. (4) 

The augmented Langevin equation (3) is equivalent to the 
Fokker-Planck equation (4) 

_ - ! v . ( r . v p )  8p +V- ( p A . V H ) + V '  ( p V ) - 2  
8t 

(4) 

where g(x)= G(x)'  G r(x) (superscript T denotes the transpose), and 

V(x) = V(x)-~ G(x). EV. G(x)] (5) 

To ensure that the system approaches a canonical equilibrium dis- 
tribution at long times, we require that 

w(x) = Wo exp[ - H(x)/kT] (6) 

be a stationary solution of Eq. (4), where T is the bath temperature and w o 
is a constant determined by the normalization condition ~ dx w(x) = 1. By 
writing the equilibrium distribution in this form, where H is the 
Hamiltonian of the isolated system, we effectively restrict attention to 
situations in which the system is weakly coupled to the heat bath. 
Otherwise w(x) may involve a modified Hamiltonian(7'8)instead of H, and 
the present phenomenological approach is unable to determine the form of 
such modifications. 

In writing Eq. (6), we have also tacitly assumed that the variables x 
are a "natural representation" of the state of the system. (9) Otherwise, a fac- 
tor of g-1/Z(x) would appear in the right member of Eq. (6), where g is the 
determinant of a metric tensor in state space. (4'9) At the same time, the 
incompressibility condition of Eq. (2) would have to be replaced by its 
covariant analog, namely V'(g-I/ZA)=-0. Thus, the restriction to 
"natural" representations is not essential and could easily be lifted. 
However, in the treatment of particular cases a "natural" choice of the 
variables x is usually fairly obvious, so we have streamlined the presen- 
tation by restricting attention to this case. Of course, if the variables x are 
simply canonical coordinates and momenta, then they automatically con- 
stitute a "natural" representation, since Eqs. (2) and (6) then directly 
apply. 

We remark parenthetically that the incompressibility condition of 
Eq. (2) (or its covariant analog) is not itself mathematically necessary, 
although it does significantly simplify the development. This condition has 
been adopted because Hamiltonian systems of physical origin seem 
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invariably to satisfy it. Of course, there are other properties that are com- 
monly associated with Hamiltonian behavior, (1~ but they do not interact 
with the present development, so we need not assume them. Of these, the 
most fundamental and important is that the generalized Poisson bracket 
defined by {cr fl} = (Vc 0 �9 A- (Vfl) satisfy the Jacobi identity. If in addition 
the matrix A is nonsingular (which requires that the number of variables n 
be even), Darboux' theorem guarantees that the system can be reduced to 
canonical form by a transformation of variables, (1~ and this in turn implies 
incompressibility of the phase flow. In the present context, however, the 
incompressibility condition itself is the relevant property, and this con- 
dition is satisfied for a wider class of systems than are encompassed by 
Darboux' theorem. In particular, it can be satisfied for systems of an odd 
number of variables, as illustrated in Section 3.2. 

We now return to the main development. The requirement that the 
canonical distribution w(x) of Eq. (6) be a stationary, solution of Eq. (4) 
will be met by imposing the potential conditions 

V" (wA'VH) + V'(wVR) = 0  (7) 

wVl = �89 Vw (8) 

where VR + Vt = V. These conditions are equivalent to detailed balance, 
and must therefore be satisfied in a true thermodynamic equilibrium. (4) By 
virtue of Eq. (2), the term V' (wA.VH) in Eq. (7) is identically zero, so 
that Eq. (7) reduces simply to V. (wVR) = 0. This is the simplification that 
results from adoption of the incompressibility condition. 

The quantities VR and V1 respectively represent reversible and irrever- 
sible fluctuation-induced modifications to the dynamics of the isolated 
system. The irreversible term Vl is uniquely determined by Eq. (8), whereas 
the condition V ' ( w V R ) = 0  constrains VR but does not determine it uni- 
quely. A thermodynamically consistent stochastic model results from any 
choice of V R that satisfies this constraint and vanishes properly in the limit 
of zero fluctuations. 

Of course, VR is in principle determined by the nature of the heat bath 
and the detailed microscopic form of the system-bath coupling. (In par- 
ticular, VR may itself be Hamiltonian in form, thereby effectively modifying 
H (7'8) and/or A, or it may have a more general form.) These microscopic 
details cannot be accommodated in the present phenomenological 
approach, and if they are important to the behavior of interest, this 
approach is not likely to be useful. The present procedure is therefore 
effectively limited to cases in which the features of interest are relatively 
insensitive to the choice of V R. It is then permissible to adopt the simplest 
thermodynamically consistent choice, and in the present formulation this is 
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clearly V R = 0. With this choice Eq. (7) is trivially satisfied and V = V I 

becomes purely irreversible in nature. 
The assumed insensitivity to VR may be expected to be quite common 

in the weakly coupled systems to which our attention is restricted. The 
weak system-bath coupling implies that V R represents a small correction to 
the dominant reversible dynamics of the isolated system. In contrast, the 
dissipative term V+ is n o t  a small correction to the dissipative dynamics; it 
is in fact the e n t i r e  dissipative contribution, since there is no dissipation in 
the isolated system. The dissipative term is needed to balance the effects of 
the noise, as shown by Eq. (8). Thus, although we have in effect simply 
neglected VR, in doing so we have nevertheless retained the lowest order 
nonvanishing contributions of both reversible and irreversible character, 
and in this sense the formulation is consistent. 

Equation (8) may be directly solved for V+ = V, and we thereby obtain 

1 
V - 2 k T  [ '  VH (9) 

where use has been made of Eq. (6). Combining Eqs. (3), (5), and (9), we 
obtain 

1 1 
~ : = A . V H - 2 ~ F - V H + ~  6 .(V-G) + G.~(t)  (10) 

which is the appropriate augmented Langevin equation for a Hamiltonian 
system of the form of Eq. (1) in contact with a heat bath at temperature T, 
the dynamical effect of the bath being modeled by the multiplicative noise 
term G.{(t). We remind the reader that Eq. (10) is a Stratonovich 
equation. The equivalent Fokker-Planck equation, obtained by combining 
Eqs. (4) and (9), is 

c~p 1 1 
, ~ + V - ( p A . V H ) - 2 ~ V - ( p F - V H ) = ~  v . ( r . V p )  (11) 

The term -(2kT)  -~ r .  VH in Eq. (10) is simply the dissipative term 
required to balance the effect of the noise. This term is of the form D - VH, 
where D = - ( 2 k T )  -1 I - = - ( 2 k T )  -1 G-G r is symmetric and negative 
definite. It follows that the dissipative term makes a negative contribution 
to/1/, so it does indeed dissipate energy as the terminology implies. The dis- 
sipative term is usually nonlinear for multiplicative noise because of the x 
dependence contained in G and therefore in D. The above relation between 
the dissipative matrix D and the noise coefficient matrix G is the general 
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nonlinear fluctuation-dissipation relation referred to in Section 1. It should 
be noted that this relation is unaffected by the choice of VR. 

The term �89 (V- G) in Eq. (10) does not appear to possess any sim- 
ple physical interpretation, which is perhaps just as well in view of the fact 
that its form depends on the choice of a stochastic interpretation rule. In 
particular, use of the It6 rule would have led to the It6 equation equivalent 
to Eqs. (10) and (11), in which �89 I" appears instead of �89 .(V. G). For- 
tunately, however, our adoption of the Stratonovich rule has the beneficial 
side effect that the term in question vanishes identically in the case of 
greatest interest, namely when the noise term G'{( t )  is itself of a 
Hamiltonian nature. In this case G '{( t )  must be of the form A'VH',  
where H'(x, t) is a stochastic Hamiltonian. But V. (A. VH') = 0 by virtue 
of Eq. (2), so V 'G must vanish as well. The augmented Langevin 
equation (10) then assumes the simple and intuitive form 

1 
= A .  V H -  ~--, ~ I'. V H +  G . ~ ( t )  (12)  

2 t ( . 1  

A sufficient condition for the noise to be Hamiltonian is that a composite 
Hamiltonian system be obtained when the system of interest is combined 
with the heat bath. Of course, this is ordinarily true by construction for the 
microscopic system-bath models. (3) Even when the noise is not 
Hamiltonian and V. G #0, it may be possible to find a different but 
stochastically equivalent G with vanishing divergence. [-Since G enters into 
the Fokker-Planck equation (11) only through I" = G �9 G r, two noise coef- 
ficient matrices G1 and G 2 a r e  stochastically equivalent if G1 .GT= 
G2.GzT.] Indeed, one expects on general grounds that an equivalent 
divergenceless G can ordinarily be found in systems of three or more 
variables.~11) 

There is a close connection between the present general formulation 
and the phenomenological equations for "mixed canonical and dissipative 
dynamics" in the presence of noise, which have been used by Enz to discuss 
critical dynamics) 12) Since Enz implicitly adopts the It6 rule, the connec- 
tion is most easily established via the Fokker-Planck equation. To this 
end, we rewrite the Fokker-Planck equation (11) of the present develop- 
ment in the equivalent form 

Op 1 
~t+V.(pA.VH)-~V.[p(r .  VH--V.r)]= VV: (or) (13) 

where we have temporarily switched to units in which kT= 1 in accordance 
with the convention used by Enz. The corresponding Fokker-Planck 
equation in the Enz theory is obtained by combining his Eqs. (4.1), (4.2), 
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and (4.26), and imposing the incompressibility condition of our Eq. (2). 
When allowance is made for the differences in notation, the result is 
precisely Eq. (13). It follows that the general nonlinear fluctuation-dis- 
sipation relation of the present development is equivalent to the 
"generalized Einstein relations" of the Enz theory. (12) In the applications 
considered by Enz, however, much of the generality is discarded by 
restricting attention to additive noise, for which 13 is independent of x and 
the fluctuation-dissipation relation becomes linear. In contrast, our interest 
here centers specifically on the fact that the general fluctuation-dissipation 
relation is fully nonlinear and may therefore be used to treat multiplicative 
noise and nonlinear dissipation. It is also noteworthy that in the present 
development, the V-l" term in the left member of Eq. (13) arises 
automatically, along with the dissipation term I-- VH, as a consequence of 
the augmented Langevin correction term F. 

3. EXAMPLES 

3.1. Mechanical Oscillator with Fluctuating Frequency 

Consider a one-dimensional harmonic oscillator described by the 
equations 

~ = v  (14) 

-- -coax  (15) 

where x is the position, v is the velocity, and coo is the natural frequency. 
This system may be written in the Hamiltonian form of Eq. (1) by letting 
x = (x, v), H = �89 2 + COo2X2), and 

'0)  16, 
Since A is independent of x here, Eq. (2) is trivially satisfied. 

Now if the oscillator frequency is random, the restoring force becomes 
- J ( t )  x instead of -coax.  We shall suppose that co2(t)= cog + 7s where 
~(t) is zero-mean normalized Gaussian white noise. Of course, the fre- 
quency modulation has no effect on the kinematic equation (14). Thus the 
noise term we wish to introduce into ~ is simply (0, - ~ x ~ ( t ) ) .  This is of the 
form G(x)- ~(t) if we take 

G = - T x  



304 Ramshaw and Lindenberg 

Here the noise term is also of Hamiltonian form, with the stochastic 
Hamiltonian given by H ' =  �89 so V-G must be zero. This is easily 
verified by direct calculation from Eq. (17). It follows from Eq. (17) that 

r=(~ ,2~ 2) (18) 
so that F - V H =  r.(cogx, v)=(0 ,  yZx2v). The augmented Langevin 
equation (12) for this example, in component form, is therefore given by 

2 = v  (19) 

2 x 72 2 
b = -co  o - - ~ x  v -  ?x{( t )  (20) 

in which the noteworthy feature is the cubic damping term. This result is in 
precise agreement with that of a microscopic system-bath model analysis 
by Lindenberg and Seshadri3 TM 

3.2. Classical Spin in a Fluctuating Magnetic Field 

Consider next a classical spin of magnetic moment M in an external 
magnetic field H o. The equations of motion for the isolated system are 

M = 7M x Ho (21 ) 

where 7 is the gyromagnetic ratio. These equations can be written in the 
Hamiltonian form of Eq. (1) by letting x = M = ( M x ,  My, Mz), 
H =  - n ' H 0 ,  and A =  7 e . n ,  where e is the Levi-Civita antisymmetric 
third-order tensor. Here A is not constant, but one readily verifies that 
(~/~M)" A = 0, so that Eq. (2) is satisfied. 

We now wish to introduce into Eq. (21) a noise term corresponding 
to a fluctuating magnetic field h(t); i.e., a term of the form 
? M x h ( t ) = - A - h ( t ) .  We shall assume the components of h(t) to be 
independent zero-mean Gaussian white noises of identical amplitude, so 
that h(t)=t/{(t) .  The desired noise term then becomes - ~ / A . { ( t ) =  
G �9 {(t), where G = -r/A. It follows that V. G = 0, as indeed it must since 
here again the noise is of a Hamiltonian nature. [In this case the stochastic 
Hamiltonian is just H ' =  - M .  h(t).] The dissipative matrix r is given by 

r = t/2A �9 A r = 72r/2(Inl 2 I - MM) (22) 

Since V H =  - H 0 ,  the augmented Langevin equation (12) for this example 
is therefore 72~2 

19I = 7M x Ho-- 2 ~  [(M" Ho) M- -  ]M[2 Ho] + 7r/M x g(t ) (23) 
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in which the noteworthy feature is the quadratic dissipative term. In con- 
trast to the preceding example, the proper form of the nonlinear dissipative 
term in this case could hardly have been obtained by intuition alone. 
Equation (23) confirms, in the classical case, the results of a microscopic 
system bath model analysis by Seshadri and Lindenberg. (14) 

3.3. Brownian M o t i o n  of a Rigid Rotor 

Our final example concerns the stochastic dynamics of a rigid rotor 
immersed in a heat bath. The dynamical effect of the bath on the rotor will 
be modeled as a random torque. 

The center of mass of the rotor is held fixed, and the rotor is free to 
rotate about it. The rotor is taken to be axisymmetric, so its orientation 
may be specified by a unit vector R collinear with the symmetry axis. The 
problem is further simplified by assuming that the principal moment of 
inertia for rotation about the symmetry axis is negligible. The other two 
principal moments of inertia are equal; their common value is taken to be 
unity. 

The equations of motion for the isolated rotor are 

l~=r (24) 

= 0 (25)  

where r is the angular velocity of the rotor. These equations can be cast 
into the Hamiltonian form of Eq. (1) by letting x = (R, r H =  �89 I•K 2, and 

where 0 is the 3 x 3 zero matrix and a is the antisymmetric 3 x 3 matrix 
defined by a = e.  R. One readily verifies that V. A = 0, so that Eq. (2) is 
satisfied. 

We now wish to introduce a random torque N(t)  into Eq. (25). Since 
we have neglected the moment of inertia for rotation about the symmetry 
axis, we must for consistency require that N is always normal to R. Thus 
we take N = F(t)  x R, where F(t) is a random force whose components are 
independent zero-mean Gaussian white noises of equal amplitude 2. An 
equivalent but more convenient form is N =  ( e - R ) .  F = a - F .  Thus, the 
noise term we wish to introduce into /~ is just (0, a �9 F), and this is of the 
standard form G(x) .  {(t) if we take 
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One readily verifies that V-G = 0. Once again this reflects an underlying 
Hamiltonian structure of the noise, with the stochastic Hamiltonian given 
by H ' = R .  F. 

It follows from Eq. (27) that the dissipation matrix I" is given by 

O a r  ) (28) r = ( ~  22a. 

and one readily verifies that 

a - a  T =  IR] 2 I - R R =  I - R R  (29) 

where I is the 3 x 3  unit matrix. Since VH=(0,r  we find that 
I ' - V H =  (0, 22a �9 a r .  to). The absence of rotation about the symmetry axis 
implies that R . r  so that a . a r - m = o ~  and I"VH=(0,220~).  The 
augmented Langevin equations (12) for this example are therefore 

R = t o x R  (30) 

22 
(9 = - 2 k T O ~  + F(t) x R (31) 

in which the dissipative term is seen to be linear. As usual, this result is in 
precise agreement with that of a corresponding microscopic system-bath 
model analysis. (15) 

The occurrence of a linear dissipative term may seem curious in view 
of the multiplicative nature of the noise term F(t) x R. In a sense, however, 
this noise term is not really multiplicative. The vector R is of unit length, 
and its presence merely serves to enforce the constraint that the random 
torque be normal to the rotor axis. If it were convenient to directly 
generate random torques satisfying this constraint, the noise term would be 
linear in them. Such subtleties are the price we pay for the convenience of 
considering R and co as three-dimensional vectors, even though each of 
them really represents only two degrees of freedom. 

A C K N O W L E D G M E N T S  

We are grateful to C. P. Enz for helpful correspondence and to the 
Center for Nonlinear Studies at Los Alamos National Laboratory for its 
hospitality. This work was performed in part under the auspices of the U.S. 
Department of Energy, and supported in part by National Science Foun- 
dation grant ATM 85-07820. 



Augmented Langevin Approach 307 

REFERENCES 

1. U. Mohanty, K. E. Shuler, and I. Oppenheim, Physica 115A:1 (1982). 
2. D. Diirr, S. Goldstein, and J. L. Lebowitz, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 

62:427 (1983). 
3. B. J. West and K. Lindenberg, Nonlinear fluctuation-dissipation relations, in Fluctuations 

and Sensitivity in Nonequilibrium Systems, W. Horsthemke and D.K. Kondepudi, eds. 
(Springer, Berlin, 1984), p. 233. 

4. J. D. Ramshaw, J. Star. Phys. 38:669 (1985). 
5. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, 

Amsterdam, 1981 ). 
6. R. Zwanzig, J. Stat. Phys. 9:215 (1973). 
7. K. Lindenberg and E. Cort6s, Physica 126A:489 (1984). 
8. E. Cort6s, B. J. West, and K. Lindenberg, J. Chem. Phys. 82:2708 (1985). 
9. H. Grabert, R. Graham, and M. S. Green, Phys. Rev. A 21:2136 (1980). 

10. R. G. Littlejohn, Singular Poisson tensors, in Mathematical Methods in Hydrodynamics 
and Integrability in Dynamical Systems, M. Tabor and Y.M. Treve, eds. (American 
Institute of Physics, New York, 1982), p. 47. 

11. R. Graham, Statistical theory of instabilities in stationary nonequilibrium systems with 
applications to lasers and nonlinear optics, in Springer Tracts in Modern Physics, Vol. 66, 
G. H6hler, ed. (Springer, Berlin, 1973), p. 1. 

12. C. P. Enz, Physica 89A:1 (1977). 
13. K. Lindenberg and V. Seshadri, Physica 109A:483 (1981). 
14. V. Seshadri and K. Lindenberg, Physica 115A:501 (1982). 
15. K. Lindenberg, U. Mohanty, and V. Seshadri, Physica I19A:l (1983). 


